CORE MATHEMATICS (C) UNIT 2 TEST PAPER 10

- (i) Given that $y = \log_3 x$, express each of the following in terms of y:

 - (a) $\log_3 x^4$, (b) $\log_3 \frac{81}{x}$.

[3]

(ii) Find, to three decimal places, the value of x for which $9^x = 8$.

[2]

Find all solutions in the interval $0 \le x \le 360$ of the equation

$$\sin x^{\circ} \tan x^{\circ} = 2$$
,

giving your answers to the nearest degree.

[6]

- The numbers 48, x and 3 are the first three terms in a geometric series.
 - (i) Find the two possible values of x.

[3]

(ii) For each value of x, find the sum to infinity of the series.

- [4]
- 4. In triangle ABC, AB = 4 cm, AC = 3.5 cm and angle ABC = 1 radian. Given that angle ACB is acute, calculate
 - (i) the size of angle ACB, in radians to 2 decimal places,

[3]

(ii) the area of triangle ABC, in cm2 to 1 decimal place.

[4]

5.

A sector OPQ of a circle of radius r cm has area 100 cm^2 .

- (i) Show that the perimeter of the sector is $2r + \frac{200}{r}$ cm.
 - (ii) Deduce the value of r for which the perimeter is a minimum [4]
- 6. A curve C has gradient equal to 2(x + 1) at the point (x, y).
 - (i) Given that C passes through (1, 5), find the equation of C in the form y = f(x).
- [4]

[4]

- The straight line y = x + k is the tangent to C at a point P.
- (ii) Find the value of k.

[4]

- (i) Expand $(2-x)^6$ in ascending powers of x, simplifying each term. 7.
- [4]

(ii) Use your answer to part (a) to deduce the expansion of $(2 + x)^6$.

[2]

(iii) Hence, or otherwise, factorise $(2+x)^6 - (2-x)^6$ completely.

[4]

CORE MATHEMATICS 2 (C) TEST PAPER 10 Page 2

8. S_1 is the sum of the positive integers from 1 to n inclusive.

 S_2 is the sum of the *odd* positive integers from 1 to 2n + 1 inclusive.

Given that $S_2 - S_1 = 66$, find the value of n.

[10]

9. The diagram shows the region R bounded by the curve $y = (x+2)\sqrt{x}$, the line x = 25 and the x-axis.

(i) Use the trapezium rule, with five intervals of equal length, to estimate the area of R to the nearest integer.

(ii) Calculate the true value of this area.

[6] [5]

www.mynarhscloud.com

B1 M1 A1

CORE MATHS 2 (C) TEST PAPER 10 : ANSWERS AND MARK SCHEME

1. (i) (a)
$$4 \log_3 x = 4y$$
 (b) $\log_3 81 - \log_3 x = 4 - y$

(ii)
$$\log_{10} 8 / \log_{10} 9 = 0.946$$
 M1 A1 5

2.
$$\sin^2 x = 2 \cos x$$
 $\cos^2 x + 2 \cos x - 1 = 0$ $(\cos x + 1)^2 = 2$ B1 M1 A1
 $\cos x = \sqrt{2} - 1 = 0.414$ $x = 66, x = 294$ M1 A1 A1

3. (i)
$$x^2 = 3(48) = 144$$
 $x = -12 \text{ or } x = 12$ M1 A1 A1
(ii) $r = \frac{1}{4} \text{ or } -\frac{1}{4}$ $S_{\infty} = \frac{48}{54} = 38.4 \text{ or } \frac{48}{34} = 64$ B1 M1 A1 A1

4. (i)
$$\sin C / 4 = \sin 1 / 3.5$$
 $\sin C = 0.962$ $\angle ACB = 1.29$ M1 A1 A1
(ii) $\angle ACB = 1.293$; $\angle BAC = 0.849$ Area = $7 \sin 0.849 = 5.3 \text{ cm}^2$ M1 A1 M1 A1 7

5. (i)
$$\frac{1}{2}r^2\theta = 100$$
 $\theta = 200/r^2$ Perimeter = $2r + r\theta = 2r + 200/r$ M1 A1 M1 A1
(ii) $dp/dr = 2 - 200/r^2 = 0$ when $r = 10$ M1 A1 M1 A1 8

6. (i)
$$y = \int 2x + 2 dx = x^2 + 2x + c$$
 $y(1) = 5$ so $c = 2$ $y = x^2 + 2x + 2$ M1 A1 M1 A1
(ii) $y = x + k$ has gradient 1, so at P , $2(x + 1) = 1$ $x = -1/2$ M1 A1
Then $y = 5/4$, so $k = 7/4$ M1 A1

7. (i)
$$(2-x)^6 = 2^6 + 6(2^5)(-x) + 15(2^4)(-x)^2 + 20(2^3)(-x)^3 + 15(2^2)(-x)^4$$
 M1 A1
 $+ 6(2)(-x)^5 + (-x)^6 = 64 - 192x + 240x^2 - 160x^3 + 60x^4 - 12x^5 + x^6$ M1 A1
(ii) $(2+x)^6 = 64 + 192x + 240x^2 + 160x^3 + 60x^4 + 12x^5 + x^6$ M1 A1
(iii) $(2+x)^6 - (2-x)^6 = 384x + 320x^3 + 24x^5 = 8x(3x^4 + 40x^2 + 48)$ M1 A1
 $= 8x(3x^2 + 4)(x^2 + 12)$ M1 A1

8.
$$S_1 = \frac{1}{2} n(n+1)$$
 $S_2 = \frac{1}{2} (n+1)(2+2n) = (n+1)^2$ M1 A1 M1 A1 A1
When $(n+1)^2 - \frac{1}{2} n(n+1) = 66$, $(n+1)(2n+2-n) = 132$ M1 A1 A1
 $n^2 + 3n - 130 = 0$ $(n-10)(n+13) = 0$ $n = 10$ M1 A1

9. (i) (0, 0), (5, 15.652), (10, 37.947), (15, 65.841), (20, 98.387), (25, 135) B3

$$\frac{1}{2}(5)(135 + 2(217.827)) = 1427$$
 M1 A1 A1
(ii)
$$\int_{0}^{25} x^{3/2} + 2x^{1/2} dx = \left[\frac{2}{5}x^{5/2} + \frac{4}{3}x^{3/2}\right]_{0}^{25} = 1250 + 500/3 = 1416\frac{2}{3}$$
 B2 M1 A1 A1 11